11 minute read

Building modern web applications has never been easier, especially with the integration of Large Language Models (LLMs) and AI-driven agents. Below, we provide examples using code snippets for each of the top 25 open-source tools, showing how they can enhance your development workflow with LLM usage, AI agent development, and serverless deployments.


AI Agents

1. Composio

Description: Composio is a versatile framework for building AI-driven applications.

LLM-Focused Example: Create a serverless AI agent powered by a GPT-like model for conversational support.

import { Composio } from 'composio';

const app = new Composio();

// Register an LLM-based service
app.use('gptAgent', {
  model: 'gpt-3.5',
  generateReply: async (prompt) => {
    // This could be a call to your LLM provider
    return await app.llm.generate(prompt);
  },
});

// Define a route that uses the AI agent
app.route('/chat', async (req, res) => {
  const { userInput } = req.body;
  const response = await app.use('gptAgent').generateReply(userInput);
  res.json({ response });
});

// Deploy serverless or run locally
app.listen(3000, () => console.log('Composio LLM app running on port 3000'));

2. Vercel AI SDK

Description: Simplifies the deployment of AI models within web applications.

LLM-Focused Example: Deploy an LLM sentiment analysis function as a serverless endpoint in a Next.js app.

// pages/api/analyze-sentiment.js
import { createLLMClient } from 'vercel-ai-sdk';

const llmClient = createLLMClient({ model: 'distilbert-sentiment' });

export default async function handler(req, res) {
  const { text } = req.body;
  const result = await llmClient.predict({ text });
  res.status(200).json({ sentiment: result });
}

// pages/index.js
import { useState } from 'react';

export default function Home() {
  const [input, setInput] = useState('');
  const [sentiment, setSentiment] = useState(null);

  const handleAnalyze = async () => {
    const res = await fetch('/api/analyze-sentiment', {
      method: 'POST',
      headers: { 'Content-Type': 'application/json' },
      body: JSON.stringify({ text: input }),
    });
    const data = await res.json();
    setSentiment(data.sentiment);
  };

  return (
    <div>
      <textarea onChange={(e) => setInput(e.target.value)} />
      <button onClick={handleAnalyze}>Analyze</button>
      {sentiment && <p>Sentiment: {sentiment}</p>}
    </div>
  );
}

3. LangGraph JS

Description: A powerful library for creating and managing complex language models.

AI Agent Example: Build a multilingual chatbot agent that automatically determines which LLM (English, Spanish, French) to use based on user input.

import LangGraph from 'langgraph-js';

const chatbot = new LangGraph({
  languages: ['en', 'es', 'fr'],
  models: {
    en: 'gpt-3.5-en',
    es: 'gpt-3.5-es',
    fr: 'gpt-3.5-fr',
  },
});

chatbot.onMessage(async (msg) => {
  // Detect language and pick the right LLM
  const selectedModel = chatbot.detectLanguage(msg.text);
  return chatbot.generateResponse(msg.text, selectedModel);
});

// Hook into a serverless endpoint
export default async function handler(req, res) {
  const { text } = req.body;
  const response = await chatbot.handleMessage({ text });
  res.json({ response });
}

4. CopilotKit

Description: Enhances developer productivity with AI-driven code suggestions.

LLM-Focused Example: Integrate CopilotKit into a serverless VS Code extension that suggests improvements for your AI agent code.

// extension.js
const copilotKit = require('copilotkit');

copilotKit.initialize({ apiKey: 'YOUR_API_KEY' });

// Provide suggestions as code is typed
vscode.workspace.onDidChangeTextDocument(async (event) => {
  const code = event.document.getText();
  const suggestions = await copilotKit.getSuggestions({ code, language: 'javascript' });
  displaySuggestions(suggestions);
});

5. LanceDB

Description: A high-performance database optimized for storing and querying large-scale AI data.

LLM-Focused Example: Store LLM-generated embeddings for a recommendation engine and query similar items.

import LanceDB from 'lancedb';

const db = new LanceDB('llm-embeddings.db');

// Insert user embeddings from an LLM
await db.insert({
  userId: 'user123',
  embedding: [0.12, 0.78, 0.34, 0.45], // LLM-generated embedding
});

// Query for similar embeddings
const results = await db.querySimilar({
  embedding: [0.12, 0.78, 0.34, 0.45],
  topK: 5,
});

console.log(results);

CI/CD (Continuous Integration/Continuous Deployment)

6. Encore

Description: Streamlines the CI/CD process with declarative pipeline configuration.

AI Agent Pipeline Example: Automatically test LLM-based code and deploy if tests pass.

# encore-pipeline.yml
stages:
  - name: Test
    steps:
      - run: npm install
      - run: npm test
  - name: Deploy
    steps:
      - run: npm run build
      - run: encore deploy

environments:
  production:
    branches:
      - main

7. Turborepo

Description: A high-performance build system for JavaScript and TypeScript monorepos.

LLM-Focused Example: Set up Turborepo to cache and speed up repeated LLM fine-tuning tasks.

// turbo.json
{
  "pipeline": {
    "fine-tune": {
      "dependsOn": ["^fine-tune"],
      "outputs": ["models/**"]
    },
    "build": {
      "dependsOn": ["fine-tune"],
      "outputs": ["dist/**"]
    }
  }
}
# Run the pipeline
npx turbo run build

8. Vitest

Description: A blazing-fast unit testing framework for modern JavaScript applications.

LLM-Focused Example: Write tests to ensure your AI agent’s prompts and responses conform to requirements.

// aiAgent.test.js
import { describe, it, expect } from 'vitest';
import { generateResponse } from './aiAgent';

describe('LLM AI Agent', () => {
  it('should generate a valid response', async () => {
    const prompt = 'Hello, how can I help you?';
    const response = await generateResponse(prompt);
    expect(response).toMatch(/I'm here to help/);
  });
});

9. Jest

Description: A widely-used testing framework for JavaScript applications.

LLM-Focused Example: Test a serverless LLM function that classifies text inputs.

// classify.test.js
const request = require('supertest');
const app = require('./app');

test('POST /classify should return a classification label', async () => {
  const response = await request(app)
    .post('/classify')
    .send({ text: 'This is a test.' });
  expect(response.statusCode).toBe(200);
  expect(response.body).toHaveProperty('label');
});

Serverless and Frameworks

10. Deno 2

Description: A secure runtime for JavaScript and TypeScript, ideal for serverless applications.

Serverless Example: Deploy a Deno function that uses an LLM for text summarization.

// ai-summarizer.ts
import { serve } from "https://deno.land/std@0.195.0/http/server.ts";
import { summarize } from 'https://deno.land/x/llm_summarizer/mod.ts';

serve(async (req) => {
  const { text } = await req.json();
  const summary = await summarize(text);
  return new Response(JSON.stringify({ summary }), {
    headers: { "Content-Type": "application/json" },
  });
});

11. Serverless Framework

Description: Simplifies the deployment and management of serverless applications.

LLM-Focused Example: Deploy a Lambda function that translates user messages via a large language model.

# serverless.yml
service: ai-translation

provider:
  name: aws
  runtime: nodejs16.x

functions:
  translateMessage:
    handler: handler.translate
    events:
      - http:
          path: translate
          method: post

plugins:
  - serverless-offline
// handler.js
const { translateWithLLM } = require('./aiTranslation');

module.exports.translate = async (event) => {
  const { text, targetLang } = JSON.parse(event.body);
  const result = await translateWithLLM(text, targetLang);
  return {
    statusCode: 200,
    body: JSON.stringify({ translated: result }),
  };
};

12. Feather.js

Description: A lightweight framework for real-time applications and REST APIs.

LLM-Focused Example: Integrate an AI agent for real-time language detection and translation of incoming chat messages.

const feathers = require('@feathersjs/feathers');
const express = require('@feathersjs/express');
const socketio = require('@feathersjs/socketio');
const { detectAndTranslate } = require('./aiAgent');

const app = express(feathers());
app.configure(socketio());

app.use('/messages', {
  async create(data) {
    const translatedData = await detectAndTranslate(data.text);
    return { ...data, translated: translatedData };
  },
});

app.listen(3030, () => console.log('Feather.js LLM app running on port 3030'));

13. Deepstream.io

Description: A real-time data server for building high-performance applications.

LLM-Focused Example: Publish real-time AI agent insights (e.g., from a text-generation service) to connected clients.

const deepstream = require('deepstream.io-client-js');
const client = deepstream('ws://localhost:6020').login();

const insightsRecord = client.record.getRecord('ai/insights');

insightsRecord.subscribe((data) => {
  console.log('New AI insights:', data);
});

// On your serverless AI agent side:
async function publishInsights(text) {
  const generated = await generateLLMText(text);
  const record = client.record.getRecord('ai/insights');
  record.set({ text, generated });
}

14. Val Town

Description: A framework for building modern, serverless web applications.

Serverless LLM Example: Use a serverless function to auto-summarize incoming data for a data dashboard.

// valtown.config.js
module.exports = {
  functions: {
    autoSummarize: {
      handler: 'summarizer.handler',
      events: ['http'],
    },
  },
};

// summarizer.js
const { summarize } = require('./llmService');

exports.handler = async (event) => {
  const { text } = JSON.parse(event.body);
  const summary = await summarize(text);
  return {
    statusCode: 200,
    body: JSON.stringify({ summary }),
  };
};

15. Socket.io

Description: Enables real-time, bidirectional communication between web clients and servers.

LLM-Focused Example: Create a real-time LLM chat agent that broadcasts typed responses to all connected clients.

// server.js
const io = require('socket.io')(3000);
const { generateLLMResponse } = require('./aiService');

io.on('connection', (socket) => {
  console.log('Client connected');

  socket.on('userMessage', async (message) => {
    const response = await generateLLMResponse(message);
    // Broadcast the response
    io.emit('chatUpdate', { user: message, ai: response });
  });
});

16. Radix Themes

Description: Offers accessible and customizable UI components.

LLM-Focused Example: Build a data exploration dashboard that uses an LLM to answer natural-language queries about your data.

import { RadixButton, RadixCard } from 'radix-themes';
import { useState } from 'react';
import { queryDataWithLLM } from './aiDataService';

export default function DataDashboard() {
  const [query, setQuery] = useState('');
  const [answer, setAnswer] = useState(null);

  const handleQuery = async () => {
    const result = await queryDataWithLLM(query);
    setAnswer(result);
  };

  return (
    <RadixCard>
      <h2>Ask Your Data</h2>
      <textarea value={query} onChange={(e) => setQuery(e.target.value)} />
      <RadixButton onClick={handleQuery}>Ask</RadixButton>
      {answer && <p>Answer: {answer}</p>}
    </RadixCard>
  );
}

Testing and Quality Assurance

17. Playwright

Description: A powerful end-to-end testing framework supporting multiple browsers.

LLM-Focused Example: Test your AI chatbot UI to ensure it loads an LLM response within a given timeframe.

// chatbot.spec.js
const { test, expect } = require('@playwright/test');

test('AI chatbot returns LLM response', async ({ page }) => {
  await page.goto('https://yourapp.com/chat');
  await page.fill('#userMessage', 'Hello, AI');
  await page.click('#sendButton');

  // Wait up to 5 seconds for the LLM response
  const responseElement = page.locator('#aiResponse');
  await expect(responseElement).toHaveText(/Hello! How can I assist?/i, { timeout: 5000 });
});

18. Puppeteer

Description: Controls headless Chrome or Chromium browsers for tasks like web scraping and automated testing.

LLM-Focused Example: Scrape your own AI agent’s webpage to validate the content it generates for SEO or moderation.

const puppeteer = require('puppeteer');

(async () => {
  const browser = await puppeteer.launch();
  const page = await browser.newPage();
  await page.goto('https://yourapp.com/ai-content');

  // Extract the AI-generated text
  const content = await page.evaluate(() => {
    return document.querySelector('#aiGenerated').textContent;
  });

  console.log('AI Content:', content);

  await browser.close();
})();

19. Prettier

Description: An opinionated code formatter ensuring consistent code style.

LLM-Focused Example: Automatically format your AI agent’s code (e.g., prompt engineering scripts) before commit.

// .prettierrc
{
  "semi": true,
  "singleQuote": true,
  "trailingComma": "es5"
}
# Add a pre-commit hook using Husky
npx husky-init && npm install
npx husky set .husky/pre-commit "npx prettier --write ."

UI/UX and Styling

20. Shadcn-UI

Description: A collection of accessible and customizable UI components.

LLM-Focused Example: Build an LLM-based Q&A interface where users can submit questions and receive AI-generated answers.

import { Button, Card, Input } from 'shadcn-ui';
import { useState } from 'react';
import { askAI } from './aiService';

export default function QAInterface() {
  const [question, setQuestion] = useState('');
  const [answer, setAnswer] = useState('');

  const handleAsk = async () => {
    const response = await askAI(question);
    setAnswer(response);
  };

  return (
    <Card>
      <Input
        value={question}
        onChange={(e) => setQuestion(e.target.value)}
        placeholder="Ask a question..."
      />
      <Button onClick={handleAsk}>Ask AI</Button>
      {answer && <div>{answer}</div>}
    </Card>
  );
}

21. Daisy UI

Description: A lightweight, customizable UI library integrating with Tailwind CSS.

LLM-Focused Example: Create a sleek chatbot interface that is styled with Daisy UI and powered by an LLM.

import 'daisyui/dist/full.css';
import { useState } from 'react';
import { getAIResponse } from './aiChatService';

export default function Chatbot() {
  const [input, setInput] = useState('');
  const [chatLog, setChatLog] = useState([]);

  const handleSend = async () => {
    const aiReply = await getAIResponse(input);
    setChatLog([...chatLog, { user: input, ai: aiReply }]);
    setInput('');
  };

  return (
    <div className="chatbot-container p-4">
      <div className="chat-window bg-base-200 p-4 rounded">
        {chatLog.map((msg, i) => (
          <div key={i}>
            <p className="text-accent">{msg.user}</p>
            <p className="text-secondary">{msg.ai}</p>
          </div>
        ))}
      </div>
      <input
        className="input input-bordered w-full mt-2"
        value={input}
        onChange={(e) => setInput(e.target.value)}
      />
      <button className="btn btn-primary mt-2" onClick={handleSend}>
        Send
      </button>
    </div>
  );
}

22. Vanilla Extract

Description: A zero-runtime CSS-in-TypeScript library for type-safe styles.

LLM-Focused Example: Style an AI response component that highlights important LLM outputs.

// styles.css.ts
import { style } from '@vanilla-extract/css';

export const container = style({
  padding: '16px',
  borderRadius: '4px',
  backgroundColor: '#f9fafb',
});

export const aiHighlight = style({
  color: '#3b82f6',
  fontWeight: 'bold',
});

// AIOutput.tsx
import React from 'react';
import * as styles from './styles.css';

export default function AIOutput({ text }) {
  return (
    <div className={styles.container}>
      <span className={styles.aiHighlight}>{text}</span>
    </div>
  );
}

23. Ark UI

Description: Modular and reusable UI components designed for scalability and flexibility.

LLM-Focused Example: Implement an analytics dashboard that uses an LLM to generate natural-language summaries of user data.

import { ArkCard, ArkChart, ArkButton } from 'ark-ui';
import { useState, useEffect } from 'react';
import { getData, summarizeData } from './aiAnalyticsService';

export default function AnalyticsDashboard() {
  const [data, setData] = useState(null);
  const [summary, setSummary] = useState('');

  useEffect(() => {
    async function loadData() {
      const rawData = await getData();
      setData(rawData);
    }
    loadData();
  }, []);

  const handleSummarize = async () => {
    if (data) {
      const result = await summarizeData(data);
      setSummary(result);
    }
  };

  return (
    <ArkCard>
      <h2>AI Data Analytics</h2>
      {data ? <ArkChart data={data} /> : <p>Loading data...</p>}
      <ArkButton onClick={handleSummarize}>Summarize</ArkButton>
      {summary && <p>Summary: {summary}</p>}
    </ArkCard>
  );
}

Additional Tools

24. HTMX

Description: Empowers developers to create dynamic, interactive web applications with minimal JavaScript.

LLM-Focused Example: Add an autocomplete feature powered by an LLM to suggest relevant queries in real-time.

<!-- index.html -->
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <title>AI Autocomplete with HTMX</title>
  <script src="https://unpkg.com/htmx.org@1.7.0"></script>
</head>
<body>
  <form hx-post="/autocomplete" hx-trigger="keyup changed delay:500ms" hx-target="#suggestions" hx-swap="innerHTML">
    <input type="text" name="query" placeholder="Search..." autocomplete="off">
  </form>
  <div id="suggestions"></div>
</body>
</html>
// server.js (Node.js with Express)
const express = require('express');
const { llmSuggest } = require('./aiAutocompleteService');

const app = express();
app.use(express.urlencoded({ extended: true }));
app.use(express.json());

app.post('/autocomplete', async (req, res) => {
  const query = req.body.query || req.body['query']; // handle form data
  const suggestions = await llmSuggest(query);
  const htmlSuggestions = suggestions.map((s) => `<div>${s}</div>`).join('');
  res.send(htmlSuggestions);
});

app.listen(4000, () => console.log('HTMX + LLM server running on port 4000'));

25. RabbitMQ

Description: A reliable messaging broker for communication between different parts of your application.

LLM-Focused Example: Offload large LLM inference tasks to a worker queue for asynchronous processing.

// producer.js
const amqp = require('amqplib');

async function enqueueLLMTask(prompt) {
  const connection = await amqp.connect('amqp://localhost');
  const channel = await connection.createChannel();
  const queue = 'llm_tasks';

  await channel.assertQueue(queue, { durable: true });
  channel.sendToQueue(queue, Buffer.from(JSON.stringify({ prompt })), { persistent: true });

  console.log('LLM Task queued:', prompt);
  await channel.close();
  await connection.close();
}

enqueueLLMTask('Explain quantum computing in simple terms.');
// consumer.js
const amqp = require('amqplib');
const { generateLLMResponse } = require('./aiLLMService');

async function consumeLLMTasks() {
  const connection = await amqp.connect('amqp://localhost');
  const channel = await connection.createChannel();
  const queue = 'llm_tasks';

  await channel.assertQueue(queue, { durable: true });
  channel.prefetch(1);
  console.log('Waiting for LLM tasks...');

  channel.consume(queue, async (msg) => {
    if (msg !== null) {
      const { prompt } = JSON.parse(msg.content.toString());
      console.log('Received LLM task:', prompt);

      // Perform AI inference
      const result = await generateLLMResponse(prompt);
      console.log('LLM Result:', result);

      channel.ack(msg);
    }
  });
}

consumeLLMTasks();

Conclusion

In 2025, the integration of LLMs and AI-driven agents will continue to revolutionize web development. By leveraging these 25 open-source tools—with examples tailored for LLM usage, AI agent creation, and serverless deployments—you can build intelligent, scalable, and future-proof applications that truly stand out.