Web Development Tools to Keep an Eye on in 2025
Building modern web applications has never been easier, especially with the integration of Large Language Models (LLMs) and AI-driven agents. Below, we provide examples using code snippets for each of the top 25 open-source tools, showing how they can enhance your development workflow with LLM usage, AI agent development, and serverless deployments.
AI Agents
1. Composio
Description: Composio is a versatile framework for building AI-driven applications.
LLM-Focused Example: Create a serverless AI agent powered by a GPT-like model for conversational support.
import { Composio } from 'composio';
const app = new Composio();
// Register an LLM-based service
app.use('gptAgent', {
model: 'gpt-3.5',
generateReply: async (prompt) => {
// This could be a call to your LLM provider
return await app.llm.generate(prompt);
},
});
// Define a route that uses the AI agent
app.route('/chat', async (req, res) => {
const { userInput } = req.body;
const response = await app.use('gptAgent').generateReply(userInput);
res.json({ response });
});
// Deploy serverless or run locally
app.listen(3000, () => console.log('Composio LLM app running on port 3000'));
2. Vercel AI SDK
Description: Simplifies the deployment of AI models within web applications.
LLM-Focused Example: Deploy an LLM sentiment analysis function as a serverless endpoint in a Next.js app.
// pages/api/analyze-sentiment.js
import { createLLMClient } from 'vercel-ai-sdk';
const llmClient = createLLMClient({ model: 'distilbert-sentiment' });
export default async function handler(req, res) {
const { text } = req.body;
const result = await llmClient.predict({ text });
res.status(200).json({ sentiment: result });
}
// pages/index.js
import { useState } from 'react';
export default function Home() {
const [input, setInput] = useState('');
const [sentiment, setSentiment] = useState(null);
const handleAnalyze = async () => {
const res = await fetch('/api/analyze-sentiment', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ text: input }),
});
const data = await res.json();
setSentiment(data.sentiment);
};
return (
<div>
<textarea onChange={(e) => setInput(e.target.value)} />
<button onClick={handleAnalyze}>Analyze</button>
{sentiment && <p>Sentiment: {sentiment}</p>}
</div>
);
}
3. LangGraph JS
Description: A powerful library for creating and managing complex language models.
AI Agent Example: Build a multilingual chatbot agent that automatically determines which LLM (English, Spanish, French) to use based on user input.
import LangGraph from 'langgraph-js';
const chatbot = new LangGraph({
languages: ['en', 'es', 'fr'],
models: {
en: 'gpt-3.5-en',
es: 'gpt-3.5-es',
fr: 'gpt-3.5-fr',
},
});
chatbot.onMessage(async (msg) => {
// Detect language and pick the right LLM
const selectedModel = chatbot.detectLanguage(msg.text);
return chatbot.generateResponse(msg.text, selectedModel);
});
// Hook into a serverless endpoint
export default async function handler(req, res) {
const { text } = req.body;
const response = await chatbot.handleMessage({ text });
res.json({ response });
}
4. CopilotKit
Description: Enhances developer productivity with AI-driven code suggestions.
LLM-Focused Example: Integrate CopilotKit into a serverless VS Code extension that suggests improvements for your AI agent code.
// extension.js
const copilotKit = require('copilotkit');
copilotKit.initialize({ apiKey: 'YOUR_API_KEY' });
// Provide suggestions as code is typed
vscode.workspace.onDidChangeTextDocument(async (event) => {
const code = event.document.getText();
const suggestions = await copilotKit.getSuggestions({ code, language: 'javascript' });
displaySuggestions(suggestions);
});
5. LanceDB
Description: A high-performance database optimized for storing and querying large-scale AI data.
LLM-Focused Example: Store LLM-generated embeddings for a recommendation engine and query similar items.
import LanceDB from 'lancedb';
const db = new LanceDB('llm-embeddings.db');
// Insert user embeddings from an LLM
await db.insert({
userId: 'user123',
embedding: [0.12, 0.78, 0.34, 0.45], // LLM-generated embedding
});
// Query for similar embeddings
const results = await db.querySimilar({
embedding: [0.12, 0.78, 0.34, 0.45],
topK: 5,
});
console.log(results);
CI/CD (Continuous Integration/Continuous Deployment)
6. Encore
Description: Streamlines the CI/CD process with declarative pipeline configuration.
AI Agent Pipeline Example: Automatically test LLM-based code and deploy if tests pass.
# encore-pipeline.yml
stages:
- name: Test
steps:
- run: npm install
- run: npm test
- name: Deploy
steps:
- run: npm run build
- run: encore deploy
environments:
production:
branches:
- main
7. Turborepo
Description: A high-performance build system for JavaScript and TypeScript monorepos.
LLM-Focused Example: Set up Turborepo to cache and speed up repeated LLM fine-tuning tasks.
// turbo.json
{
"pipeline": {
"fine-tune": {
"dependsOn": ["^fine-tune"],
"outputs": ["models/**"]
},
"build": {
"dependsOn": ["fine-tune"],
"outputs": ["dist/**"]
}
}
}
# Run the pipeline
npx turbo run build
8. Vitest
Description: A blazing-fast unit testing framework for modern JavaScript applications.
LLM-Focused Example: Write tests to ensure your AI agent’s prompts and responses conform to requirements.
// aiAgent.test.js
import { describe, it, expect } from 'vitest';
import { generateResponse } from './aiAgent';
describe('LLM AI Agent', () => {
it('should generate a valid response', async () => {
const prompt = 'Hello, how can I help you?';
const response = await generateResponse(prompt);
expect(response).toMatch(/I'm here to help/);
});
});
9. Jest
Description: A widely-used testing framework for JavaScript applications.
LLM-Focused Example: Test a serverless LLM function that classifies text inputs.
// classify.test.js
const request = require('supertest');
const app = require('./app');
test('POST /classify should return a classification label', async () => {
const response = await request(app)
.post('/classify')
.send({ text: 'This is a test.' });
expect(response.statusCode).toBe(200);
expect(response.body).toHaveProperty('label');
});
Serverless and Frameworks
10. Deno 2
Description: A secure runtime for JavaScript and TypeScript, ideal for serverless applications.
Serverless Example: Deploy a Deno function that uses an LLM for text summarization.
// ai-summarizer.ts
import { serve } from "https://deno.land/std@0.195.0/http/server.ts";
import { summarize } from 'https://deno.land/x/llm_summarizer/mod.ts';
serve(async (req) => {
const { text } = await req.json();
const summary = await summarize(text);
return new Response(JSON.stringify({ summary }), {
headers: { "Content-Type": "application/json" },
});
});
11. Serverless Framework
Description: Simplifies the deployment and management of serverless applications.
LLM-Focused Example: Deploy a Lambda function that translates user messages via a large language model.
# serverless.yml
service: ai-translation
provider:
name: aws
runtime: nodejs16.x
functions:
translateMessage:
handler: handler.translate
events:
- http:
path: translate
method: post
plugins:
- serverless-offline
// handler.js
const { translateWithLLM } = require('./aiTranslation');
module.exports.translate = async (event) => {
const { text, targetLang } = JSON.parse(event.body);
const result = await translateWithLLM(text, targetLang);
return {
statusCode: 200,
body: JSON.stringify({ translated: result }),
};
};
12. Feather.js
Description: A lightweight framework for real-time applications and REST APIs.
LLM-Focused Example: Integrate an AI agent for real-time language detection and translation of incoming chat messages.
const feathers = require('@feathersjs/feathers');
const express = require('@feathersjs/express');
const socketio = require('@feathersjs/socketio');
const { detectAndTranslate } = require('./aiAgent');
const app = express(feathers());
app.configure(socketio());
app.use('/messages', {
async create(data) {
const translatedData = await detectAndTranslate(data.text);
return { ...data, translated: translatedData };
},
});
app.listen(3030, () => console.log('Feather.js LLM app running on port 3030'));
13. Deepstream.io
Description: A real-time data server for building high-performance applications.
LLM-Focused Example: Publish real-time AI agent insights (e.g., from a text-generation service) to connected clients.
const deepstream = require('deepstream.io-client-js');
const client = deepstream('ws://localhost:6020').login();
const insightsRecord = client.record.getRecord('ai/insights');
insightsRecord.subscribe((data) => {
console.log('New AI insights:', data);
});
// On your serverless AI agent side:
async function publishInsights(text) {
const generated = await generateLLMText(text);
const record = client.record.getRecord('ai/insights');
record.set({ text, generated });
}
14. Val Town
Description: A framework for building modern, serverless web applications.
Serverless LLM Example: Use a serverless function to auto-summarize incoming data for a data dashboard.
// valtown.config.js
module.exports = {
functions: {
autoSummarize: {
handler: 'summarizer.handler',
events: ['http'],
},
},
};
// summarizer.js
const { summarize } = require('./llmService');
exports.handler = async (event) => {
const { text } = JSON.parse(event.body);
const summary = await summarize(text);
return {
statusCode: 200,
body: JSON.stringify({ summary }),
};
};
15. Socket.io
Description: Enables real-time, bidirectional communication between web clients and servers.
LLM-Focused Example: Create a real-time LLM chat agent that broadcasts typed responses to all connected clients.
// server.js
const io = require('socket.io')(3000);
const { generateLLMResponse } = require('./aiService');
io.on('connection', (socket) => {
console.log('Client connected');
socket.on('userMessage', async (message) => {
const response = await generateLLMResponse(message);
// Broadcast the response
io.emit('chatUpdate', { user: message, ai: response });
});
});
16. Radix Themes
Description: Offers accessible and customizable UI components.
LLM-Focused Example: Build a data exploration dashboard that uses an LLM to answer natural-language queries about your data.
import { RadixButton, RadixCard } from 'radix-themes';
import { useState } from 'react';
import { queryDataWithLLM } from './aiDataService';
export default function DataDashboard() {
const [query, setQuery] = useState('');
const [answer, setAnswer] = useState(null);
const handleQuery = async () => {
const result = await queryDataWithLLM(query);
setAnswer(result);
};
return (
<RadixCard>
<h2>Ask Your Data</h2>
<textarea value={query} onChange={(e) => setQuery(e.target.value)} />
<RadixButton onClick={handleQuery}>Ask</RadixButton>
{answer && <p>Answer: {answer}</p>}
</RadixCard>
);
}
Testing and Quality Assurance
17. Playwright
Description: A powerful end-to-end testing framework supporting multiple browsers.
LLM-Focused Example: Test your AI chatbot UI to ensure it loads an LLM response within a given timeframe.
// chatbot.spec.js
const { test, expect } = require('@playwright/test');
test('AI chatbot returns LLM response', async ({ page }) => {
await page.goto('https://yourapp.com/chat');
await page.fill('#userMessage', 'Hello, AI');
await page.click('#sendButton');
// Wait up to 5 seconds for the LLM response
const responseElement = page.locator('#aiResponse');
await expect(responseElement).toHaveText(/Hello! How can I assist?/i, { timeout: 5000 });
});
18. Puppeteer
Description: Controls headless Chrome or Chromium browsers for tasks like web scraping and automated testing.
LLM-Focused Example: Scrape your own AI agent’s webpage to validate the content it generates for SEO or moderation.
const puppeteer = require('puppeteer');
(async () => {
const browser = await puppeteer.launch();
const page = await browser.newPage();
await page.goto('https://yourapp.com/ai-content');
// Extract the AI-generated text
const content = await page.evaluate(() => {
return document.querySelector('#aiGenerated').textContent;
});
console.log('AI Content:', content);
await browser.close();
})();
19. Prettier
Description: An opinionated code formatter ensuring consistent code style.
LLM-Focused Example: Automatically format your AI agent’s code (e.g., prompt engineering scripts) before commit.
// .prettierrc
{
"semi": true,
"singleQuote": true,
"trailingComma": "es5"
}
# Add a pre-commit hook using Husky
npx husky-init && npm install
npx husky set .husky/pre-commit "npx prettier --write ."
UI/UX and Styling
20. Shadcn-UI
Description: A collection of accessible and customizable UI components.
LLM-Focused Example: Build an LLM-based Q&A interface where users can submit questions and receive AI-generated answers.
import { Button, Card, Input } from 'shadcn-ui';
import { useState } from 'react';
import { askAI } from './aiService';
export default function QAInterface() {
const [question, setQuestion] = useState('');
const [answer, setAnswer] = useState('');
const handleAsk = async () => {
const response = await askAI(question);
setAnswer(response);
};
return (
<Card>
<Input
value={question}
onChange={(e) => setQuestion(e.target.value)}
placeholder="Ask a question..."
/>
<Button onClick={handleAsk}>Ask AI</Button>
{answer && <div>{answer}</div>}
</Card>
);
}
21. Daisy UI
Description: A lightweight, customizable UI library integrating with Tailwind CSS.
LLM-Focused Example: Create a sleek chatbot interface that is styled with Daisy UI and powered by an LLM.
import 'daisyui/dist/full.css';
import { useState } from 'react';
import { getAIResponse } from './aiChatService';
export default function Chatbot() {
const [input, setInput] = useState('');
const [chatLog, setChatLog] = useState([]);
const handleSend = async () => {
const aiReply = await getAIResponse(input);
setChatLog([...chatLog, { user: input, ai: aiReply }]);
setInput('');
};
return (
<div className="chatbot-container p-4">
<div className="chat-window bg-base-200 p-4 rounded">
{chatLog.map((msg, i) => (
<div key={i}>
<p className="text-accent">{msg.user}</p>
<p className="text-secondary">{msg.ai}</p>
</div>
))}
</div>
<input
className="input input-bordered w-full mt-2"
value={input}
onChange={(e) => setInput(e.target.value)}
/>
<button className="btn btn-primary mt-2" onClick={handleSend}>
Send
</button>
</div>
);
}
22. Vanilla Extract
Description: A zero-runtime CSS-in-TypeScript library for type-safe styles.
LLM-Focused Example: Style an AI response component that highlights important LLM outputs.
// styles.css.ts
import { style } from '@vanilla-extract/css';
export const container = style({
padding: '16px',
borderRadius: '4px',
backgroundColor: '#f9fafb',
});
export const aiHighlight = style({
color: '#3b82f6',
fontWeight: 'bold',
});
// AIOutput.tsx
import React from 'react';
import * as styles from './styles.css';
export default function AIOutput({ text }) {
return (
<div className={styles.container}>
<span className={styles.aiHighlight}>{text}</span>
</div>
);
}
23. Ark UI
Description: Modular and reusable UI components designed for scalability and flexibility.
LLM-Focused Example: Implement an analytics dashboard that uses an LLM to generate natural-language summaries of user data.
import { ArkCard, ArkChart, ArkButton } from 'ark-ui';
import { useState, useEffect } from 'react';
import { getData, summarizeData } from './aiAnalyticsService';
export default function AnalyticsDashboard() {
const [data, setData] = useState(null);
const [summary, setSummary] = useState('');
useEffect(() => {
async function loadData() {
const rawData = await getData();
setData(rawData);
}
loadData();
}, []);
const handleSummarize = async () => {
if (data) {
const result = await summarizeData(data);
setSummary(result);
}
};
return (
<ArkCard>
<h2>AI Data Analytics</h2>
{data ? <ArkChart data={data} /> : <p>Loading data...</p>}
<ArkButton onClick={handleSummarize}>Summarize</ArkButton>
{summary && <p>Summary: {summary}</p>}
</ArkCard>
);
}
Additional Tools
24. HTMX
Description: Empowers developers to create dynamic, interactive web applications with minimal JavaScript.
LLM-Focused Example: Add an autocomplete feature powered by an LLM to suggest relevant queries in real-time.
<!-- index.html -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>AI Autocomplete with HTMX</title>
<script src="https://unpkg.com/htmx.org@1.7.0"></script>
</head>
<body>
<form hx-post="/autocomplete" hx-trigger="keyup changed delay:500ms" hx-target="#suggestions" hx-swap="innerHTML">
<input type="text" name="query" placeholder="Search..." autocomplete="off">
</form>
<div id="suggestions"></div>
</body>
</html>
// server.js (Node.js with Express)
const express = require('express');
const { llmSuggest } = require('./aiAutocompleteService');
const app = express();
app.use(express.urlencoded({ extended: true }));
app.use(express.json());
app.post('/autocomplete', async (req, res) => {
const query = req.body.query || req.body['query']; // handle form data
const suggestions = await llmSuggest(query);
const htmlSuggestions = suggestions.map((s) => `<div>${s}</div>`).join('');
res.send(htmlSuggestions);
});
app.listen(4000, () => console.log('HTMX + LLM server running on port 4000'));
25. RabbitMQ
Description: A reliable messaging broker for communication between different parts of your application.
LLM-Focused Example: Offload large LLM inference tasks to a worker queue for asynchronous processing.
// producer.js
const amqp = require('amqplib');
async function enqueueLLMTask(prompt) {
const connection = await amqp.connect('amqp://localhost');
const channel = await connection.createChannel();
const queue = 'llm_tasks';
await channel.assertQueue(queue, { durable: true });
channel.sendToQueue(queue, Buffer.from(JSON.stringify({ prompt })), { persistent: true });
console.log('LLM Task queued:', prompt);
await channel.close();
await connection.close();
}
enqueueLLMTask('Explain quantum computing in simple terms.');
// consumer.js
const amqp = require('amqplib');
const { generateLLMResponse } = require('./aiLLMService');
async function consumeLLMTasks() {
const connection = await amqp.connect('amqp://localhost');
const channel = await connection.createChannel();
const queue = 'llm_tasks';
await channel.assertQueue(queue, { durable: true });
channel.prefetch(1);
console.log('Waiting for LLM tasks...');
channel.consume(queue, async (msg) => {
if (msg !== null) {
const { prompt } = JSON.parse(msg.content.toString());
console.log('Received LLM task:', prompt);
// Perform AI inference
const result = await generateLLMResponse(prompt);
console.log('LLM Result:', result);
channel.ack(msg);
}
});
}
consumeLLMTasks();
Conclusion
In 2025, the integration of LLMs and AI-driven agents will continue to revolutionize web development. By leveraging these 25 open-source tools—with examples tailored for LLM usage, AI agent creation, and serverless deployments—you can build intelligent, scalable, and future-proof applications that truly stand out.